«Жар-птицы» из космоса

0

Словно капризная жар-птица, гравитационные волны никак не даются в руки людей. Хотя косвенные признаки их существования имеются. Чтобы подтвердить принятую учёными картину мироздания и заодно открыть целый кладезь информации о Вселенной, физики и астрономы идут на всяческие ухищрения. Среди последних — проект по созданию гигантского гравитационного телескопа.

Этот замысел не так уж абсурден, как кажется на первый взгляд. Согласно теории, гравитационная волна, проходя через какой-то участок пространства, чуть-чуть растягивает и сжимает его в двух взаимно перпендикулярных направлениях.

Поместив на пути волны пробное тело и измерив его геометрию с высокой точностью, по идее, гравитационную волну можно уловить. Вот только эффект этот очень мал. Дабы усилить его, нужно либо создавать чудовищные по размеру установки, либо… искать пробные тела в далёком космосе. Но по порядку.

Источник вселенских знаний

Сильные гравитационные волны могут быть порождены вращением неидеальных нейтронных звёзд, их могут также генерировать различные катастрофические процессы во Вселенной, вроде слияния чёрных дыр и коллапса тесных двойных звёздных систем. Наконец, хаотичные движения крупномасштабных неоднородностей вещества в первые доли секунды существования Вселенной также должны были оставить после себя след из космологических гравитационных волн. Представляете, сколько новых знаний можно почерпнуть из такого источника?

Для поимки тонкой ряби в ткани пространства-времени исследователи построили несколько больших наземных установок и собираются даже запустить детекторы на орбиту. Но, увы, результаты многолетних наблюдений пока неутешительны. Чувствительности приборов всё ещё не хватает для поимки жар-птицы. А казалось, победа близка. Ведь современная аппаратура способна уловить колебания в длине плеча лазерного интерферометра (один из видов гравитационных телескопов), насчитывающие тысячные доли диаметра атомного ядра. И это — при расстоянии между зеркалами детектора в сотни метров и даже в несколько километров.

Авторы нового суперпроекта полагают, что за научным счастьем следует топать в другом направлении. Группа учёных из доброго полутора десятков научных организаций США, Канады и Франции работает над развитием «Североамериканской наногерцевой обсерватории гравитационных волн» (NANOGrav). И пусть обсерватория будет располагаться на Земле, но, в этом вся красота замысла, пробные тела, издевательства гравитационных волн над которыми и будут измеряться, расположены за много тысяч световых лет от нашего голубого шарика.

Планеты-поплавки

В качестве детекторов авторы проекта намерены использовать порядка сотни миллисекундных пульсаров — безумно вращающиеся нейтронные звёзды, испускающие периодические радиоимпульсы с аккуратностью и точностью, которым позавидуют любые атомные часы. Сами нейтронные звёзды также способны генерировать гравитационные волны, но в данном случае исследователей интересует умение пульсаров откликаться на прохождение через них таких волн, посланных каким-нибудь другим источником.

Расчёты говорят, что в такой ситуации в строгой последовательности радиосигналов произойдёт крошечный сбой — очередной «писк» будет издан чуть-чуть позже или чуть-чуть раньше номинального времени. Правда, чтобы таким способом ухватить-таки нашу жар-птицу за хвост, нужно, чтобы погрешность измерения времени прихода каждого импульса не превышала 100 наносекунд.

Лишь для нескольких самых удачных пульсаров в настоящее время достигнута такая погрешность измерений. А для надёжной поимки искажений пространства лучше располагать точностью ещё более высокой. Не беда, утверждают астрономы, в течение следующего десятилетия точность «лучше 100 наносекунд» окажется достижима.

Ловец невидимых волн

Сейчас проект проводит первые пробные наблюдения, получая данные с радиотелескопов обсерваторий «Аресибо» в Пуэрто-Рико и «Грин Бэнк» в Западной Вирджинии.

Но участники проекта NANOGrav надеются в будущем получить толику рабочего времени на грандиозных радиотелескопах-интерферометрах следующего поколения. К таковым относят, например, «Телескоп Аллена», расположенный в Калифорнии. Он заработал не в полную силу в 2007-м, но всё ещё продолжает расширяться. Главная цель этого комплекса — поиск сигналов от братьев по разуму. Одновременно же научное сообщество проводит на нём исследования далёких звёзд, галактик и туманностей.

В своём финальном варианте «Телескоп Аллена» станет одним из самых зорких радиотелескопов мира. Но самым-самым окажется ещё только проектируемый Square Kilometer Array, имя которого можно перевести как «Массив в квадратный километр».

Под одним квадратным километром тут подразумевается даже не занимаемый комплексом на земле участок, а суммарная приёмная площадь всех составляющих его антенн, россыпь которых растянется на 3000 километров.
Этот международный проект предусматривает возведение замысловатой фигуры из тысяч антенн двух видов – наклонных «блюдец» и горизонтальных плоских панелей с синтезированной апертурой. В качестве места строительства пока названо несколько подходящих площадок в разных странах, но два главных претендента — Австралия и ЮАР. Выбор между ними будет сделан в 2011 или 2012 году.

SKA будет в 50 раз более чувствительным, чем какой-либо другой радиотелескоп в мире, а обзор неба он сможет выполнять в 10 тысяч раз быстрее. SKA будет работать в довольно широком диапазоне частот (70 мегагерц — 25 гигагерц) и затруднительно даже перечислить все цели, которые могут оказаться в его перекрестии. Неудивительно, что инициаторы проекта NANOGrav намерены получить толику рабочего времени и на этом уникальном инструменте.

Однако, прежде, чем поток сырых данных превратится в явные сигналы от пробегающих по Галактике гравитационных волн, учёным потребуется раскусить ряд непростых задач.

Например, нужно проработать выявление и вычитание из исходных сигналов искажений, вносимых в них по мере прохождения радиоизлучения через космос (на пути электромагнитных волн от пульсаров могут попадаться большие облака заряженных частиц). Есть и другие задачи в области софта и железа. Но все они — решаемые.
По оценке специалистов, в полную силу проект должен заработать к 2020 году (примерно к этому сроку будет завершено развёртывание исполинских массивов ATA и SKA), хотя и в 2010-х NANOGrav не будет бездействовать: продолжатся исследования при помощи аппаратуры в Аресибо и Грин Бэнк. Стоимость же работ окажется на уровне $66 миллионов за 10 лет наблюдений, пишет Membrana.ru.

Поделиться.

Комментарии закрыты